Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport
A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: </br></br> </br>• Statistical fluctuation formulae for the dielectric constant</br> </br>• Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions</br> </br>• High-order singular/hypersingular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots</br> </br>• Absorbing and UPML boundary conditions </br> </br>• High-order hierarchical Nédélec edge elements </br> </br>• High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods </br> </br>• Finite element and plane wave frequency-domain methods for periodic structures </br> </br>• Generalized DG beam propagation method for optical waveguides</br> </br>• NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport</br> </br>• High-order WENO and Godunov and central schemes for hydrodynamic transport </br> </br>• Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas</br>